Gao, Z; Liu, H; Katul, G; Foken, T: Unclosure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies, Environmental Research Letters, 12, 034025 (2017), doi:10.1088/1748&x2013;9326/aa625b [Link]

It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoff and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.

Aktuelle Termine

Do. 12.04.2018
Diversity and impact of invasive crayfish and crayfish plague: from Czechia to continental scale
Do. 19.04.2018
A new experiment to unravel the Impact of Biodiversity and Climate Variability on the functioning of grasslands
Do. 26.04.2018
Anticipating biome shifts
Ökologisch-Botanischer Garten:
So. 01.04.2018
April, April! Auch Pflanzen täuschen
So. 15.04.2018
Führung: Der ÖBG zum Kennenlernen: Allgemeine Gartenführung
Wetter Versuchsflächen
Globalstrahlung: 22 W/m²
Lufttemperatur: -4.7 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 12.3 km/h
Wind (Max.): 25.9 km/h