Huq, S; De Roo, F; Foken, T; Mauder, M: Evaluation of Probe-Induced Flow Distortion of Campbell CSAT3 Sonic Anemometers by numerical simulation, Boundary Layer Meteorology, 165, 9-28 (2017)

The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. Themagnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551–565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371–395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.

Zu dieser Publikation gibt es weitere Dateien zum Download

Aktuelle Termine

Do. 21.06.2018 aktuell
The tangled evolutionary history of plants and fungi
Mo. 25.06.2018
Öffentliche Vorträge im Rahmen der Besetzung der Professur "Sportökologie"
Do. 28.06.2018
From the field to the lab to integrated risk assessment of vector-borne pathogens
Ökologisch-Botanischer Garten:
Mi. 27.06.2018
Harmlos bis tödlich: Krankheiten der Bäume
Mi. 27.06.2018
GFBio Roadshow – Research Data Management for scientists, step by step (German Federation for Biological Data)
Wetter Versuchsflächen
Luftdruck (356m): 967.3 hPa
Lufttemperatur: 25.8 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: 2 h/d
Wind (Höhe 17m): 11.6 km/h
Wind (Max.): 22.7 km/h
Windrichtung: SW

Globalstrahlung: 417 W/m²
Lufttemperatur: 22.2 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: 3 h/d
Wind (Höhe 32m): 15.8 km/h
Wind (Max.): 34.8 km/h