Manderscheid, B; Schweisser, T; Lischeid, G; Alewell, C; Matzner, E: Sulfate pools in the weathered substrata of a forested catchment, Soil Sci. Soc. Amer. J., 64, 1078-1082 (2000), doi:10.2136/sssaj2000.6431078x
The mitigating effect of decreasing anthropogenic SO4 deposition on acidified soils and waters can be delayed by the release of previously stored soil SO4. We investigated SO4 pools and desorption in the weathered substrata (0.5-10 m depth) of a forested catchment on granite to quantify the importance of these layers to SO4 dynamics. Solid-phase materials from 10 boreholes to a maximum depth of 10 m were analyzed for water- and phosphate-extractable SO4, SO4 desorption, cation-exchange capacity (CEC), pH, and dithionite- and oxalate-extractable (Fe (Fed and Feo) and Al (Ald and Alo). Seven of the investigated boreholes were used to monitor water table depth and to obtain samples for measurement of solution SO4 concentrations. The storage of phosphate-extractable SO4 in the weathered substrata was estimated at 90 kmol ha-1, of which about 50 kmol ha-1 were water soluble. Sulfate pools and their desorption behavior were highly variable, which could partly be explained by the variation of pH and extractable Fe and Al contents of the samples. Sulfate concentrations in groundwater were dependent on the depth of groundwater table and correspondend with the depth gradients of solid-phase SO4. The SO4 pools of the substrata were apparently regulation solution concentrations. Thus, groundwater acidification in such aquifers will not be easily reversed by decreasing SO4 because of the release of previously stored SO4.
Aktuelle Termine

Fr. 10.07.2020 aktuell
12th BayCEER Workshop 2020: "Call for Abstracts" geöffnet
Do. 22.10.2020
Extreme redox oscillations in freshwater re-flooded acid sulfate soil wetlands: Effects on Fe, S, and trace metals geochemical behavior
Do. 29.10.2020
Dissolved organic matter quality in differently managed forest ecosystems
Do. 05.11.2020
Signaling of rhizosphere microbiome: key for plant health, development and nutrition
Do. 29.10.2020
Neuer Termin: BayCEER Workshop 2020
BayCEER Blog
Why Science Communication?
Stoichiometric controls of C and N cycling
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
Picky carnivorous plants?
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 976.7 hPa
Lufttemperatur: 12.3 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 17m): 2.7 km/h
Wind (Max.): 5.0 km/h
Windrichtung: SO

Globalstrahlung: -6 W/m²
Wind (Höhe 32m): 0.0 km/h

Diese Webseite verwendet Cookies. weitere Informationen