Schwesig, D; Kalbitz, K; Matzner, E: Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors, European Journal of Soil Science, 54, 311-322 (2003)
Abstract:
Aluminium (Al) is abundant in soils, but the influence of Al on the mineralization of dissolved organic carbon and thus on carbon sequestration in soil is only poorly understood. We investigated the extent and rate of mineralization of dissolved organic carbon at various Al/C ratios. Dissolved organic carbon extracted from Oi and Oa layers under coniferous and deciduous forest was incubated with initial molar Al/C ratios from < 0.004 to 0.44 for 130 days. Mineralization was quantified by measurement of CO2. Rapidly and slowly mineralizable pools of dissolved organic C and their decomposition rate constants and half-lives (as a measure of labile and stable C) were modelled with a double exponential equation. Increasing initial Al/C ratios up to 0.1 led to a considerable decrease in mineralization (up to 50% compared with control samples). The half-life of the stable C pool increased up to 4-fold, whereas the half-life of the labile C pool was unaffected. Ratios of Al/C > 0.1 did not further decrease the mineralization, but led to increasing concentrations of free Al3+ in solution, and to increasing Al/C ratios in the precipitate, indicating that the Al complexation capacity of dissolved organic C was exceeded. Decrease in mineralization as well as formation of particulate organic matter (up to 56% of initial dissolved organic C) affected mainly the stable pool. Mineralization of dissolved organic C can be predicted from UV absorption by use of exponential regressions, but adding an Al variable did not improve the prediction significantly. We conclude that Al influences substantially the biodegradability of dissolved organic C percolating into the mineral soil, which may have consequences for the carbon sequestration in the soil. Declining Al concentrations would increase the mineralization of dissolved organic C only if the Al/C ratio becomes less than the 'threshold value' in the range of the Al complexation capacity of the dissolved organic C.
Aktuelle Termine


BayCEER-Kolloquium:
Do. 16.01.2020
Ecosystem functional types and biome concepts
Geographisches Kolloquium:
Di. 17.12.2019
The meat of the Anthropocene: Food, capital and the globalisation of industrialised animal killing
Ökologisch-Botanischer Garten:
So. 05.01.2020
Auf ins Neue! Winterspaziergang im ÖBG
So. 05.01.2020
Konzert: Musikalischer Jahresbeginn mit den Rockin`Dinos
So. 19.01.2020
Kastilien, Navarra und das Baskenland: Orchideen im Land Don Quijotes
BayCEER Blog
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
16.04.2019
Picky carnivorous plants?
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 964.8 hPa
Lufttemperatur: 10.0 °C
Niederschlag: 0.5 mm/24h
Sonnenschein: 4 h/d
Wind (Höhe 17m): 6.3 km/h
Wind (Max.): 11.2 km/h
Windrichtung: SO

...mehr
Globalstrahlung: 253 W/m²
Lufttemperatur: 6.3 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: 1 h/d
Wind (Höhe 32m): 12.0 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen