von Lützow, M; Kögel-Knabner, I; Ekschmitt, K; Matzner, E; Guggenberger, G; Marschner, B; Flessa, H: Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions - a review, European Journal of Soil Science, 57(4), 426-445 (2006), doi:10.1111/j.1365-2389.2006.00809.x
Abstract:
Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research.
Aktuelle Termine



BayCEER-Kolloquium:
Do. 23.01.2020
Understanding biodiversity dynamics – from human dominated systems to the fossil record
Do. 30.01.2020
BayCEER Mitgliederversammlung
Geographisches Kolloquium:
Di. 28.01.2020
Adivasis in the Anthropocene - What an Environmental History of Eastern India can tell us about the global agricultural and food crisis
Ökologisch-Botanischer Garten:
So. 02.02.2020
Mehr als Sonne und Strand: Pflanzen der Karibik
SFB Mikroplastik:
Mo. 27.01.2020
Wissenschaftskommunikation: Nachhaltigkeit und Mikroplastik
BayCEER Blog
13.01.2020
Why Science Communication?
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 991.6 hPa
Lufttemperatur: -4.2 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 17m): 3.7 km/h
Wind (Max.): 9.4 km/h
Windrichtung: S

...mehr
Globalstrahlung: 171 W/m²
Lufttemperatur: -4.5 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 7.4 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen