Shimizu, M; Zhou, J; Schröder, C; Obst, M; Kappler, A; Borch, T: Dissimilatory Reduction and Transformation of Ferrihydrite-Humic Acid Coprecipitates, Environmental Science & Technology, 47(13), 13375-13384 (2013), online: 2013-11-12, doi:10.1021/es402812j [Link]
Abstract:

Organic matter (OM) is present in most terrestrial environments and is often found coprecipitated with ferrihydrite (Fh). Sorption or coprecipitation of OM with Fe oxides has been proposed to be an important mechanism for long-term C preservation. However, little is known about the impact of coprecipitated OM on reductive dissolution and transformation of Fe(III) (oxyhydr)oxides. Thus, we study the effect of humic acid (HA) coprecipitation on Fh reduction and secondary mineral formation by the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens strain CN32. Despite similar crystal structure for all coprecipitates investigated, resembling 2-line Fh, the presence of coprecipitated HA resulted in lower specific surface areas. In terms of reactivity, coprecipitated HA resulted in slower Fh bioreduction rates at low C/Fe ratios (i.e., C/Fe ≤ 0.8), while high C/Fe ratios (i.e., C/Fe ≥ 1.8) enhanced the extent of bioreduction compared to pure Fh. The coprecipitated HA also altered the secondary Fe mineralization pathway by inhibiting goethite formation, reducing the amount of magnetite formation, and increasing the formation of a green rust-like phase. This study indicates that coprecipitated OM may influence the rates, pathway, and mineralogy of biogeochemical Fe cycling and anaerobic Fe respiration within soils.

This site makes use of cookies More information