Schweiger, A; Beierkuhnlein, C: Water temperature and acidity regime shape dominance and beta-diversity patterns in the plant communities of springs, Frontiers of Biogeography, 6(3), 132-143 (2014) [Link]
Abstract:
The processes underlying species’ dominance patterns and community composition are insufficiently investigated for springs, yet these systems, which are believed to be very stable environments, represent an important interface between aquatic and terrestrial habitats contributing significantly to local and regional diversity. We studied the dominance patterns and plant community composition of 238 springs in Central Europe. According to the conventional ecological belief we hypothesized (1) a positive relationship between local abundance and regional distribution of spring plant species, as well as between species commonness and species’ realized breadth and (2) the occurrence of oligarchic spe- cies similar to other stable environments like tropical forests. Based on previous studies on these springs, we furthermore hypothesized (3) that water pH—essentially a proxy for nutrient availability—is the major driver of spatial compositional dissimilarity, i.e. beta-diversity. We tested these three hypotheses by using species commonness estimates, realized niche space and generalized dissimilarity modelling based on hydrochemistry. In line with conventional wisdom, we report a positive relationship between local abundance, species commonness and regional distribution for the majority of the species. In contradiction to other systems, we found both specialist and generalist species to be locally dominant and regionally widespread, thus common, while species with intermediate niche breadth showed the lowest commonness values. However, we detected three oligarchic species, exceeding all other species in local abundance and regional distribution, which did not follow these relationships. Both dominance relations (oligarchy) and community composition were mainly driven by water temperature and concen- tration of elements related to acidity regime (Al, Cd, Ca and Mg), although much of the variation in both remained unexplained. Thus, further research should focus on biotic interactions, which are likely to be important drivers of plant community composition in springs.

Link

Aktuelle Termine



BayCEER-Kolloquium:
Do. 21.11.2019 aktuell
Quantification of subsurface properties using the groundwater response to Earth and atmospheric tides
Do. 28.11.2019
Rates and Dates in Alpine geosystems - Monitoring and reconstruction of geomorphologic processes
Konferenzen:
Fr. 22.11.2019
Geoökologie-Tagung 2019
Ökologisch-Botanischer Garten:
So. 24.11.2019
Mikroplastik in der Umwelt
SFB Mikroplastik:
Mi. 27.11.2019
Microbial Degradation of Plastics: Searching the Needle in the Haystack
BayCEER Blog
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
16.04.2019
Picky carnivorous plants?
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 964.6 hPa
Lufttemperatur: 6.5 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: 3 h/d
Wind (Höhe 17m): 2.5 km/h
Wind (Max.): 7.2 km/h
Windrichtung: SW

...mehr
Globalstrahlung: 131 W/m²
Lufttemperatur: 5.7 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 2.1 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen