Fischer, D; Thomas, S M; Beierkuhnlein, C: Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany, Geospatial Health, 5(1), 59-69 (2010)
Abstract:
Climate change is expected to manifest in the shift of organisms to regions where they were not present in the past, potentially entailing previously unseen biological risks. However, studies evaluating these future trends are scarce. Here, an important group of vectors (sandflies) and the pathogen transmitted (Leishmania infantum complex) causing the infectious disease visceral leishmaniasis is investigated, focussing on potential establishment in Germany during the 21st century. As the most important habitat factor, temperature requirements of pathogen and vector were derived from the literature and compared with recent climate records - provided by worldclim - and climate change scenarios. Climate data from the Regional Climate Model REMO were obtained and averaged over the time periods 2011- 2040, 2041-2070 and 2071-2100. Projected temperature changes (based on the A1B and A2 scenarios) were correlated with the constraints of vector and pathogen. Simulated potentially suitable habitat areas for vector and pathogen were merged to generate a temperature-derived risk map of visceral leishmaniasis. Temperature conditions seem to become suitable for the vector across large swaths of Germany. Nevertheless, temperature constraints for the pathogen may defer the establishment of the parasitic disease, particularly during the first half of the 21st century. Long-lasting epidemics of visceral leishmaniasis are therefore not expected in Germany during the next few decades, although during extremely warm years an increase in autochthonous cases of leishmaniasis may occur. The southwest (Upper Rhine Valley) and west (Cologne Bight) of Germany are identified as risk areas. The time of potential establishment and corresponding rise in biological risk varies between scenarios, due to differences in the predicted rate of temperature increase.
Aktuelle Termine



BayCEER-Kolloquium:
Do. 14.11.2019
Analysis of ozone formation and trend over northern Bavaria by using stochastic and deterministic models
Do. 21.11.2019
Quantification of subsurface properties using the groundwater response to Earth and atmospheric tides
Konferenzen:
Fr. 22.11.2019
Geoökologie-Tagung 2019
Universitäts-Forum Bayreuth:
Mi. 13.11.2019
Bayreuther Innenstadt und Rotmaincenter: Freund oder Feind? - Betrachtungen aus der Perspektive der Besucher
Vortrag:
Fr. 15.11.2019
Changing the game in Earth Observation - The European Union’s Copernicus programme -
BayCEER Blog
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
16.04.2019
Picky carnivorous plants?
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 963.3 hPa
Lufttemperatur: 5.9 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: 3 h/d
Wind (Höhe 17m): 6.2 km/h
Wind (Max.): 17.6 km/h
Windrichtung: S

...mehr
Globalstrahlung: 132 W/m²
Lufttemperatur: 1.9 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 9.6 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen