Schlather, M; Huwe, B: A stochastic model for 3-dimensional flow patterns in infiltration experiments, Journal of Hydrology, 310(1-4), 17-27 (2005)
Modelling the 3-dimensional water flux at field scale is important for the design and the analysis of dye tracer experiments. Furthermore, it enables the estimation of the risk to groundwater by pollutants, and the visualisation and classification of flux patterns. A stochastic model is presented that allows for the modelling of a wide range of flow patterns in soils as they appear in dye tracer experiments. The leading idea is that infiltrating water runs along paths, not necessarily preferential ones, and water spreads into the soil uniformly from the paths into the matrix. The model is essentially based on a Poisson point process and three independent random fields. The point process defines the starting points of the paths at the surface. The values of two random fields determine the course of the paths. The third random field governs the depth of the infiltration front. As an extension of the model, we present two simulated examples for stratified soils.
Aktuelle Termine

Do. 25.04.2024
Perspectives and challenges in the restoration and conservation of two isolated habitats: gypsum and cliffs
BayCEER Short Courses:
Mi. 24.04.2024
Mobile Film Making Workshop (for PhDs/PostDosc/Profs of BayCEER)
Fr. 26.04.2024
Mobile Film Making Workshop (for students of BayCEER)
Ökologisch-Botanischer Garten:
Fr. 19.04.2024 aktuell
Führung | Gesteine im Ökologisch-Botanischen Garten
So. 21.04.2024
Führung | Den ÖBG kennenlernen: Allgemeine Gartenführung
Wetter Versuchsflächen
Luftdruck (356m): 970.0 hPa
Lufttemperatur: 4.5 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d

Lufttemperatur: 1.1 °C
Niederschlag: 0.0 mm/24h

Diese Webseite verwendet Cookies. weitere Informationen