Zhang, Y; Liu, H; Foken, T; Williams, QL; Liu, S; Mauder, M; Liebethal, C: Turbulence spectra and cospectra under the influence on large eddies in the Energy Balance EXperiment (EBEX), Boundary-Layer Meteorology, 136, 235-251 (2010), doi:DOI: 10.1007/s10546-010-9504-1
Abstract:
During the Energy Balance EXperiment, the patch-by-patch, flood irrigation in a flat cotton field created an underlying surface with heterogeneous soil moisture, leading to a dry (warm)-to-wet (cool) transition within the cotton field under northerly winds. Moreover, the existence of an extremely dry, large bare soil area upstream beyond the cotton field created an even larger step transition from the bare soil region to the cotton field. We investigated the turbulence spectra and cospectra in the atmospheric surface layer (ASL) that was disturbed by large eddies generated over regions upstream and also influenced by horizontal advection. In the morning, the ASL was unstable while in the afternoon a stable internal boundary layer was observed at the site. Therefore, the turbulence data at 2.7 and 8.7 m are interpreted and compared in terms of interactions between large eddies and locally generated turbulence under two atmospheric conditions: the unstable ASL beneath the convective boundary layer (CBL) (hereafter the unstable condition) and the stable ASL beneath the CBL (hereafter the stable condition). We identified the influences of multiple sizes of large eddies on ASL turbulence under both stratifications; these large eddies with multiple sizes were produced over the dry patches and dry, large bare soil areas upstream. As a consequence of the disturbance of large eddies, the broadening, erratic variability, and deviation of spectra and cospectra, relative to those described by Monin–Obukhov similarity theory, are evident in the low- to mid-frequencies. Transfer of momentum, heat, and water vapour by large eddies is distinctly observed from the turbulence cospectra and leads to significant run-to-run variations of residuals of the surface energy balance closure. Our results indicate that these large eddies have greater influences on turbulence at higher levels compared to lower levels, and in the unstable ASL compared to the stable ASL.

Zu dieser Publikation gibt es weitere Dateien zum Download

Passwort
Aktuelle Termine

Fr. 01.07.2022
3. Bayerische Biodiversitätstage in Bayern 2022
BayCEER-Kolloquium:
Do. 30.06.2022
Postponed to WS 22/23: Plant diversity in a changing world: from individuals to communities
Ökologisch-Botanischer Garten:
Mi. 29.06.2022
Führung | "Klimawandel: Neue Bäume braucht die Stadt"
So. 03.07.2022
Führung | "Mäusedorn und Katzenschwanz: Katzen und Botanik"
So. 03.07.2022
Ausstellungseröffnung | "Natur und Kunst" - Malerei und Graphik von Christel Gollner
Wetter Versuchsflächen
Luftdruck (356m): 973.1 hPa
Lufttemperatur: 26.2 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: 9 h/d
Wind (Höhe 17m): 8.7 km/h
Wind (Max.): 26.6 km/h
Windrichtung: NW

...mehr
Lufttemperatur: 22.2 °C
Niederschlag: 0.5 mm/24h
Sonnenschein: <1 h/d

...mehr
Diese Webseite verwendet Cookies. weitere Informationen