Wulfmeyer, V; Behrendt, A; Kottmeier, C; Corsmeier, U; Barthlott, C; Craig, GC; Hagen, M; Althausen, D; Aoshima, F; Apagaus, M; Bauer, H-S; Bennett, L; Blyth, A; Brandau, C; Champollion, C; Crewell, S; Dick, G; Di Girolamo, P; Dorninger, M; Dufournet, Y; Eigenmann, R; Engelmann, R; Flamant, C; Foken, T; Gorgas, T; Grzeschik, M; Handwerker, J; Hauck, C; Höller, H; Junkermann, W; Kalthoff, N; Kiemle, C; Klink, S; König, M; Krauss, L; Long, CN; Madonna, F; Mobbs, S; Neininger, B; Pal, S; Peters, G; Pigeon, G; Richard, E; Rotach, MW; Russchenberg, H; Schwitalla, T; Smith, V; Steinacker, R; Trentmann, J; Turner, DD; Van Baelen, J; Vogt, S; Volker, H; Weckwerth, T; Wernli, H; Wieser, A; Wirth, M: The Convective and Orographically induced Precipitation Study (COPS): The scienentific strategy, the field phase, and research highlights, Quarterly Journal of the Royal Meteorological Society, 137, 3-30 (2011), doi:10.1002/qj.752

Within the framework of the international field campaign COPS (Convective and Orographically induced Precipitation Study), a large suite of state-of-the-art meteorological instrumentation was operated, partially combined for the first time. This includes networks of in situ and remote-sensing systems such as the Global Positioning System as well as a synergy of multi-wavelength passive and active remote-sensing instruments such as advanced radar and lidar systems. The COPS field phase was performed from 01 June to 31 August 2007 in a low-mountain area in southwestern Germany/eastern France covering the Vosges mountains, the Rhine valley and the Black Forest mountains. The collected dataset covers the entire evolution of convective precipitation events in complex terrain from their initiation, to their development and mature phase until their decay. Eighteen Intensive Observations Periods with 37 operation days and eight additional Special Observations Periods were performed, providing a comprehensive dataset covering different forcing conditions. In this article, an overview of the COPS scientific strategy, the field phase, and its first accomplishments is given. Highlights of the campaign are illustrated with several measurement examples. It is demonstrated that COPS research provides new insight into key processes leading to convection initiation and to the modification of precipitation by orography, in the improvement of quantitative precipitation forecasting by the assimilation of new observations, and in the performance of ensembles of convection-permitting models in complex terrain.

Thomson Reuters ScienceWatch® has selected this article as a featured New Hot Paper

Zu dieser Publikation gibt es weitere Dateien zum Download

Aktuelle Termine

Do. 09.02.2023
Rising Novelty in Ecosystems and Climates
Do. 16.02.2023
What is diversification and how should we study it?
Mi. 01.03.2023
Main FlussFilmFest 2023
Ökologisch-Botanischer Garten:
So. 12.02.2023
Eigentümlich fremd: Wie Neophyten unsere Vorstellungen von Natur provozieren
So. 26.02.2023
Vortrag | "Die Silphie: Nachhaltige Bioenergiepflanze! Invasives Potential?" Vortrag von Marie Ende
Wetter Versuchsflächen
Luftdruck (356m): 993.2 hPa
Lufttemperatur: -2.9 °C
Niederschlag: 0.1 mm/24h
Sonnenschein: 7 h/d

Globalstrahlung: 2 W/m²
Lufttemperatur: -7.5 °C
Niederschlag: 0.0 mm/24h
Wind (Höhe 32m): 15.9 km/h

Diese Webseite verwendet Cookies. weitere Informationen