Druckansicht der Internetadresse:

Fakultät für Biologie, Chemie und Geowissenschaften

Lehrstuhl Bodenökologie - Prof. Dr. Eva Lehndorff

Seite drucken
Shi, C; Urbina-Malo, C; Tian, Y; Heinzle, J; Kwatcho Kengdo, S; Inselsbacher, E; Borken, W; Schindlbacher, A; Wanek, W: Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions, Global Change Biology, 79(8), 2188-2202 (2023), doi:https://doi.org/10.1111/gcb.16591
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.
Youtube-KanalKontakt aufnehmen
Diese Webseite verwendet Cookies. weitere Informationen