Mikutta, R; Zang, U; Chorover, J; Haumaier, L; Kalbitz, K: Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms, Geochim. Cosmochim. Acta, 75, 3135-3154 (2011), doi:10.1016/j.gca.2011.03.006 | |
Abstract: Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction results in a decrease in EPS bioaccessibility, it may contribute to stabilization of microbial-derived organic carbon (OC) in soil. Here we examined: (i) the chemical fractionation of EPS produced by a common Gram positive soil bacterial strain (Bacillus subtilis) during reaction with dissolved and colloidal Al species; and (ii) the resulting stabilization against desorption and microbial decay by the respective coprecipitation (with dissolved Al) and adsorption (with Al(OH)3(am)) processes. Coprecipitates and adsorption complexes obtained following EPS-Al reaction as a function of pH and ionic strength were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stability of adsorbed and coprecipitated EPS against biodegradation was assessed by mineralization experiments for 1100 hours. Up to 60% of the initial 100 mg/L EPS-C was adsorbed at the highest initial molar Al:C ratio (1.86), but this still resulted only in a moderate OC mass fraction in the solid phase (17 mg/g Al(OH)3(am)). In contrast, while coprecipitation by Al was less efficient in removing EPS from solution (maximum values of 33% at molar Al:C ratios of 0.1–0.2), the OC mass fraction in the solid product was substantially larger than that in adsorption complexes. Organic P compounds were preferentially bound during both adsorption and coprecipitation. Data are consistent with strong ligand exchange of EPS phosphoryl groups during adsorption to Al(OH)3(am), whereas for coprecipitation weaker sorption mechanisms are also involved. X-ray photoelectron analyses indicate an intimate mixing of EPS with Al in the coprecipitates, which is not observed in the case of EPS adsorption complexes. The incubation experiments showed that both processes result in overall stabilization of EPS against microbial decay. Stabilization of adsorbed or coprecipitated EPS increased with increasing molar Al:C ratio and biodegradation was correlated with EPS desorption, implying that detachment of EPS from surface sites is a prerequisite for microbial utilization. Results indicate that the mechanisms transferring EPS into Al–organic associations may significantly affect the composition and stability of biomolecular C, N and P in soils. The observed efficient stabilization of EPS might explain the strong microbial character of organic matter in subsoils. |