Kreyling, J; Arfin Khan, MAS; Sultana, F; Babel, W; Beierkuhnlein, C; Foken, T; Walter, J; Jentsch, A: Drought Effects in Climate Change Manipulation Experiments: Quantifying the Influence of Ambient Weather Conditions and Rain-out Shelter Artifacts, Ecosystems, 20(2), 301–315 (2017), doi:10.1007/s10021-016-0025-8 [Link]
Abstract:

Extreme drought events challenge ecosystem functioning. Ecological response to drought is studied worldwide in a growing number of field experiments by rain-out shelters. Yet, few meta-analyses face severe challenges in the comparability of studies. This is partly because build-up of drought stress in rain-out shelters is modified by ambient weather conditions. Rain-out shelters can further create confounding effects (radiation, temperature), which may influence plant responses. Yet, a quantification of ecophysiological effects within rain-out shelters under opposing ambient weather conditions and of microclimatological artifacts is missing. Here, we examined phytometers—standardized potted individuals of Plantago lanceolata—under rain-out shelter, rain-out shelter artifact control, and ambient control during opposing outside microclimatological conditions. Furthermore, we tested for artifacts of rain-out shelters on plant responses in a long-term semi-natural grassland experiment. Phytometer plants below the rain-out shelters showed lower stomatal conductance, maximum quantum efficiency, and leaf water potential during warm ambient conditions with high evaporative demand than during cold conditions with low evaporative demand. Plant performance was highly correlated with ambient temperature and vapor pressure deficit (VPD). Rain-out shelter artifacts on plant responses were nonsignificant. Rain-out shelters remain a viable tool for studying ecosystem responses to drought. However, drought manipulations using rain-out shelters are strongly modified by ambient weather conditions. Attributing the results from rain-out shelter studies to drought effects and comparability among studies and study years therefore requires the quantification of the realized drought stress, for example, by relating ecosystem responses to measured microclimatological parameters such as air temperature and VPD.

Aktuelle Termine



BayCEER-Kolloquium:
Do. 14.11.2019
Analysis of ozone formation and trend over northern Bavaria by using stochastic and deterministic models
Do. 21.11.2019
Quantification of subsurface properties using the groundwater response to Earth and atmospheric tides
Konferenzen:
Fr. 22.11.2019
Geoökologie-Tagung 2019
Universitäts-Forum Bayreuth:
Mi. 13.11.2019
Bayreuther Innenstadt und Rotmaincenter: Freund oder Feind? - Betrachtungen aus der Perspektive der Besucher
Vortrag:
Fr. 15.11.2019
Changing the game in Earth Observation - The European Union’s Copernicus programme -
BayCEER Blog
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
16.04.2019
Picky carnivorous plants?
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 963.7 hPa
Lufttemperatur: 5.7 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: 2 h/d
Wind (Höhe 17m): 6.5 km/h
Wind (Max.): 16.9 km/h
Windrichtung: S

...mehr
Globalstrahlung: 119 W/m²
Lufttemperatur: 1.9 °C
Niederschlag: 0.4 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 9.3 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen