Kreyling, J; Arfin Khan, MAS; Sultana, F; Babel, W; Beierkuhnlein, C; Foken, T; Walter, J; Jentsch, A: Drought Effects in Climate Change Manipulation Experiments: Quantifying the Influence of Ambient Weather Conditions and Rain-out Shelter Artifacts, Ecosystems, 20(2), 301–315 (2017), doi:10.1007/s10021-016-0025-8 [Link]
Abstract:

Extreme drought events challenge ecosystem functioning. Ecological response to drought is studied worldwide in a growing number of field experiments by rain-out shelters. Yet, few meta-analyses face severe challenges in the comparability of studies. This is partly because build-up of drought stress in rain-out shelters is modified by ambient weather conditions. Rain-out shelters can further create confounding effects (radiation, temperature), which may influence plant responses. Yet, a quantification of ecophysiological effects within rain-out shelters under opposing ambient weather conditions and of microclimatological artifacts is missing. Here, we examined phytometers—standardized potted individuals of Plantago lanceolata—under rain-out shelter, rain-out shelter artifact control, and ambient control during opposing outside microclimatological conditions. Furthermore, we tested for artifacts of rain-out shelters on plant responses in a long-term semi-natural grassland experiment. Phytometer plants below the rain-out shelters showed lower stomatal conductance, maximum quantum efficiency, and leaf water potential during warm ambient conditions with high evaporative demand than during cold conditions with low evaporative demand. Plant performance was highly correlated with ambient temperature and vapor pressure deficit (VPD). Rain-out shelter artifacts on plant responses were nonsignificant. Rain-out shelters remain a viable tool for studying ecosystem responses to drought. However, drought manipulations using rain-out shelters are strongly modified by ambient weather conditions. Attributing the results from rain-out shelter studies to drought effects and comparability among studies and study years therefore requires the quantification of the realized drought stress, for example, by relating ecosystem responses to measured microclimatological parameters such as air temperature and VPD.

Aktuelle Termine


BayCEER-Kolloquium:
Do. 12.04.2018
- folgt -
Do. 19.04.2018
A new experiment to unravel the Impact of Biodiversity and Climate Variability on the functioning of grasslands
Do. 26.04.2018
Anticipating biome shifts
Ökologisch-Botanischer Garten:
So. 04.03.2018
Die Lösung? Pflanzliche Alternativen für Plastik
Workshop:
Mi. 28.02.2018
Workshop Einstieg in die Umweltmesstechnik mit Arduino und Raspberry Pi
Wetter Versuchsflächen
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d

...mehr
Globalstrahlung: 0 W/m²
Lufttemperatur: -7.9 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: 4 h/d
Wind (Höhe 32m): 10.4 km/h
Wind (Max.): 25.2 km/h

...mehr