Druckansicht der Internetadresse:

BayCEER - Bayreuth Center of Ecology and Environmental Research

print page
Reithmaier, L; Göckede, M; Markkanen, T; Knohl, A; Churkina, A; Rebmann, C; Buchmann, N; Foken, T: Use of remotely sensed land use classification for a better evaluation of micrometeorological flux measurement sites, Theoretical and Applied Climatology, 84, 219-233 (2006), doi:DOI 10.1007/s00704-005-0168-6

Long-term flux measurement sites are often characterized by a heterogeneous terrain, which disagrees with the fundamental theoretical assumptions for eddy-covariance measurements. An evaluation procedure to assess the influence of terrain heterogeneity on the data quality has been developed by Go¨ckede et al. (2004), which combines existing quality assessment tools for flux measurements with analytic footprint modeling. In addition to micrometeorological input data, this approach requires information defining the land use structure and the roughness of the surrounding terrain.

The aim of this study was to improve the footprint based site evaluation approach by using high-resolution land use maps derived by Landsat ETMT+ and ASTER satellite data. The influence of the grid resolution of the maps on the results was examined, and four different roughness length classification schemes were tested. Due to numerical instabilities of the analytic footprint routine, as an additional footprint model a Lagrangian stochastic footprint routine (Rannik et al., 2003) was employed. Application of the approach on two German FLUXNET sites revealed only weak influence of the characteristics of the land use data when the land use structure was homogeneous. For a more heterogeneous site, use of the more detailed land use maps derived by remote sensing methods resulted in distinct differences indicating the potential of remote sensing for improving the flux measurement site evaluation.

There are additional file downloads belonging to this publication

This site makes use of cookies More information