Welcome to the Micrometeorology group!
Our goal is to understand and quantify the interactions between air, vegetation, and land surface.
Our research foci are the atmospheric transport and near-surface exchange of momentum, energy, and mass in natural and man-made landscapes. Our interests span an entire spectrum of scales from turbulent eddies to interannual variability of carbon and water fluxes of ecosystems. We conduct research in a variety of ecosystems including locations in Europe, the Americas, and Antarctica. We are an international, interdisciplinary, and active research group with diverse interests at the interface between the air, the plants, and the soil.
We use a variety of tools to approach our research questions: field experiments utilizing the eddy covariance technique for estimation of surface exchange, fiber optic arrays for quantifying airflow and heat exchange using distributed temperature sensing, ground based acoustic and light-based remote sensing to assess lower boundary layer dynamics, wind tunnel experiments for sensor development, as well as computer models to observe and simulate the diffusion and dispersion of trace gases in the air.
Our group has three complementary research foci:
- Turbulence (micrometeorology)
- Trends (climate change science)
- Observational Tools (instrumentation)
We hope you enjoy our webpage and please let us know if you have any questions or comments.
Christoph Thomas, Professor and head of the Micrometeorology Group
Most current publications hot off the press
Peer reviewed
2025
Peltola, O., Aslan, T., Aurela, M., Lohila, A., Mammarella, I., Papale, D., Thomas, C., Vesala, T., Laurila, T.: Towards an enhanced metric for detecting vertical flow decoupling in eddy covariance flux observations. Agricultural and Forest Meteorology, 362 (2025).
doi:10.1016/j.agrformet.2024.110326
2024
Huss, J., Thomas, C.: The impact of turbulent transport efficiency on surface vertical heat fluxes in the Arctic stable boundary layer predicted from similarity theory and machine-learning. Journal of the Atmospheric Sciences, 81, 1977-1998 (2024).
doi:10.1175/JAS-D-24-0063.1
Seidler, J., Friedrich, M., Thomas, C., Nölscher, A.: Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas. Atmospheric Chemistry and Physics, 24(1), 137-153 (2024).
doi:10.15495/EPub_UBT_00007415