Druckansicht der Internetadresse:

Faculty for Biology, Chemistry and Earth Sciences

Micrometeorology - Prof. Christoph Thomas

print page
 

Welcome to the Micrometeorology group!

Our goal is to understand and quantify the interactions between air, vegetation, and land surface.

micrometeorological-instruments

Our research foci are the atmospheric transport and near-surface exchange of momentum, energy, and mass in natural and man-made landscapes. Our interests span an entire spectrum of scales from turbulent eddies to interannual variability of carbon and water fluxes of ecosystems. We conduct research in a variety of ecosystems including locations in Europe, the Americas, and Antarctica. We are an international, interdisciplinary, and active research group with diverse interests at the interface between the air, the plants, and the soil.

wind-and-temperature-fields-in-subcanopy-forest

We use a variety of tools to approach our research questions: field experiments utilizing the eddy covariance technique for estimation of surface exchange, fiber optic arrays for quantifying airflow and heat exchange using distributed temperature sensing, ground based acoustic and light-based remote sensing to assess lower boundary layer dynamics, wind tunnel experiments for sensor development, as well as computer models to observe and simulate the diffusion and dispersion of trace gases in the air.

Our group has three complementary research foci:

  • Turbulence (micrometeorology) 
  • Trends (climate change science)
  • Observational Tools (instrumentation)

We hope you enjoy our webpage and please let us know if you have any questions or comments.

Christoph Thomas, Professor and head of the Micrometeorology Group

Most current publications hot off the press

Peer reviewed

2022

Esders, E., Georgi, C., Babel, W., Thomas, C.: Quantitative detection of aerial suspension of particles with a full-frame visual camera for atmospheric wind tunnel studies. Aerosol Science and Technology, 1-15 (2022).
doi:10.1080/02786826.2022.2048789

Abdoli, M., Lapo, K., Schneider, J., Olesch, J., Thomas, C.: Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing. Atmospheric Measurement Techniques Discussions, 2022, 1-25 (2022).
doi:10.15495/EPub_UBT_00006630

Thomas, C., Huss, J., Abdoli, M., Huttarsch, T., Schneider, J.: Solid-Phase Reference Baths for Fiber-Optic Distributed Sensing. Sensors, 22(11) (2022).
doi:10.3390/s22114244

Youtube-Kanal
This site makes use of cookies More information